User Manual

FavorPrep™ 96-well Genomic DNA Kit

For Research Use Only

-For 96-well high-throughput DNA extraction from whole blood, buffy coat, serum, plasma, body fluids cultured cells and animal tissues.

Kit Contents:

Cat. No.: (Quantity)	FADWE 96001 (1 plate)	FADWE 96002 (2 plates)	FADWE 96004 (4 plates)
FATG1 Buffer	40 ml	80 ml	80 ml × 2
FATG2 Buffer	40 ml	80 ml	80 ml × 2
W1 Buffer * (Concentrate)	44 ml	88 ml	88 ml × 2
Wash Buffer ■ (Concentrate)	17.5 ml	35 ml	35 ml × 2
Elution Buffer	30 ml	60 ml	60 ml × 2
Proteinase K (Liquid)	1050 µl × 2	1050 µl × 4	1050 µl × 8
Filter Plate (96-Well DNA Binding Plate)	1 plate	2 plates	4 plates
Collection Plate (96-Well 2 ml Plate)	3 plate	6 plates	12 plates
Elution Plate (96-Well PCR Plate)	1 plate	2 plates	4 plates
Adhesive Film	2 pcs	4 pcs	8 pcs
User Manual	1	1	1

Preparation of working buffers

Add RNase-free ethanol (96~100%) to Wash Buffer 1 and Wash Buffer 2 for the first use.

	FADWE 96001	FADWE 96002	FADWE 96004
* Ethanol volume for Wash Buffer 1	16 ml	32 ml	
Ethanol volume for Wash Buffer 2	70 ml	140 ml	

Quality Control

The quality of 96-Well Genomic DNA Kit is tested on a lot-to-lot basis. The purified DNA is checked by real-time PCR and capillary electrophoresis.

Specification:

Principle: 96- well DNA Binding Plate (silica membrane)

Sample size/preparation: up to 200 µl of fresh/frozen whole blood, buffy coat, serum, plasma, body fluids

up to 25 mg of animal tissue

up to 5×106 cultured animal cells Processing: centrifugation protocol or vacuum & centrifugation protocol

Operation time: <90 mins/96 preparations (1 plate)

DNA Binding capacity: up to 30 µg/well

Elution volume: 75~200 µl

Reagent to be provided by user

- 1.96~100% ethanol
- 2. (Optional) RNAse A (50 mg/ml)

Important notes:

- 1. Buffers provided in this system contain irritants. Wear gloves and lab coat when handling these buffers.
- 2. The maximum sample size is described on specification, do not use the sample more than the limitation.
- 3. Add ethanol (96~100%) to W1 Buffer and Wash Buffer at the first open.
- 4. Set incubator or ovens to 60°C and 70°C before the operation.
- 5. Preheat the Elution Buffer to 70°C for DNA elution.
- 6. Equipments required:
- 60°C and 70°C shaker incubators or ovens.
- For centrifugation protocol: A centrifuge is required, capable of 5,600~6,000 x g, with a swing-bucket rotor and the adaptor for 96-well plates.
- For vacuum protocol: A vacuun manifold for 96-well plate and a vacuum source reached to 15 inches Hg are required.

(Alternative): If using centrifugation for Elution Step (STEP 6), a centrifuge equipment is required, capable of 5,600~ 6,000 x g, with a swing-bucket rotor and the adaptor for 96-well plate.

Sample amount and vield

Sample (maximum sample size)	Recommended amount of sample used	Average yield (µg)
Whole Blood (up to 200 µl)	200 μΙ	4~12
Low yield Tissue (Mouse) (up to 25 mg)	Heart, 25 mg Brain, 25 mg Kidney, 25 mg Lung, 25 mg Intestine, 10 mg	5~15 5~25 20~30 5~10 5~10
High yield Tissue (Mouse)(up to 10 mg)	Spleen, 10 mg	5~30
Animal cells (up to 5×10 ⁶ cells)	5×10° cells	15~20

Brief procedure:

• STEP 1. Sample preparation and lysis

For whole blood, buffy coat, serum, plasma, body fluids

- Add Proteinase K in → Add sample. each well of Collection Plate
- → Add FATG2 Buffer and mix completely.

 Incubate the plate with shaking at 60°C for 20 mins.

For aminam tissues and cultured cells

 Collect samples in a Collection Plate (first Collection Plate).

(first Collection Plate).

- Add FATG1 Buffer and Proteinase K.
- Add FATG2 Buffer → and mix completely.
- Seal with Adhesive Film. Incubate the plate with shaking at 60°C for 1~2 hrs.

- Seal with Adhesive Film. Further incubate the plate at 70°C for 20 mins.

• STEP 2. Adjust binding condition:

Add ethanol.

Mix by pipetting.

• STEP 3. Bind DNA to Filter Plate: Centrifuge protocol

- Combind the plates. • Transfer the sample mixture to Filter Plate.
- Centrifuge at 4,500~6,000 x g for 5 mins.

Collection Plate

(second Collection Plate)



Assemble plates to vacuum manifold.
Transfer the sample mixture to Filter Plate.

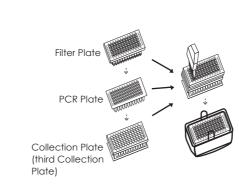
- Apply 10 inches Hg vacuum until the well have emptied.

Vacuum protocol

• STEP 4. Wash the Filter Plate Twice (W1 Buffer and Wash Buffer)

Add W1 Buffer. Centrifuge at 5,600~6,000 x g for 2 mins.
Add Wash Buffer. Centrifuge at 5,600~6,000 x g for 15 mins.

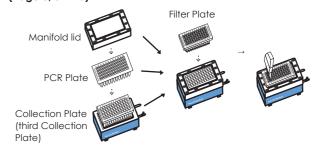
- Add W1 Buffer. Apply vacuum at 10 inches Hg.
 Add Wash Buffer. Apply vacuum at 10 inches Hg for 10 mins.



• STEP 5. Dry the membranes of Filter Plate:

- Stand the Filter Plate on a clean paper towel at room temperature for 10 mins.
- Tap the Filter Plate tips on paper towel.
- Return the Filter Plate and the Collection Plate to the manifold.
- Apply maximum vacuum for an additional 10 mins.

• STEP 6. DNA Elution:


- Add Elution Buffer or ddH2O to the Filter Plate. Stand for
- · Centrifuge to elute DNA.

- Add Elution Buffer or ddH2O to the Filter Plate. Stand for 3 mins.
- Close the manifold valve. Turn on the vacuum source to build
- up a vacuum to 15 inches Hg.

 Open the manifold valve to apply vacuum to elute DNA.

Alternative: If the consistent volume of elutes are needed, the centrifuge protocol are recommended to perform the elution step. (Page 3, STEP 6)

v20230401

Protocol: Centrifugation processing

Please Read Important Notes Before Starting The Following Steps.

Required hardware

- 60°C and 70°C shaker incubators or ovens.
- Centrifuge equipment capable of 5,600~6,000 x g with a swing-bucket rotor and the adaptor for 96-well plate.

Hint

Preheat required Elution Buffer or ddH₂O (75~100 µl per well) to 70°C for DNA elution step (STEP 6).

STEP 1: Sample lysis

•Whole blood, buffy coat, serum, plasma, body fluids

- · Add 20 µl Proteinase K to each wells of a Collection Plate (provided, 96-well 2 ml Plate; first Collection Plate).
- · Add 200 µl of sample to each well and mix by pipetting.
- · Add 200 µl FATG2 Buffer to each well and mix by pipetting.
- · Seal with Adhesive Film. Incubate the plate with shaking at 100 rpm, 60°C for 20 mins.
- (Optional) If RNA-free genomic DNA is required, add 5 µl of RNase A (50 mg/ml, not provided) to each well and incubate at room temperature for 4 mins.
- · Proceed to STEP 2.

Animal Tissue

- Cut up to 25 mg of animal tissues (or 0.5 cm of mouse tail) and transfer into each well of a Collection Plate (provided, 96-well 2 ml Plate; first Collection Plate). Reduce the sample size to 10 mg for high DNA contained tissue, such as liver and spleen.
- Add 200 µl FATG1 Buffer and 20 µl Proteinase K to each well of a Collection Plate (provided, 96-well 2 ml Plate; first Collection Plate).
- Seal with Adhesive Film. Incubate the plate with shaking at 100 rpm, 60°C for 1~2 hrs or more time until the tissue sample is lysed completely. To reduce the incubation time, grind the sample in liquid nitrogen or homogenize the sample mechanically in advance.
- **(Optional)** If RNA-free genomic DNA is required, add 5 µl of RNase A (50 mg/ml, not provided) to each well and incubate at room temperature for 4 mins.
- · Add 200 µl FATG2 Buffer to each well and mix by pipetting.
- Seal with Adhesive Film. Incubate the plate with shaking at 100 rpm, 70°C for 20 mins until the sample lysate is clear.
- Proceed to STEP 2.

Animal Cultured Cell

- · Transfer cultured cells to each well of a Collection Plate (provided, 96-well 2 ml Plate; first Collection Plate).
- · Centrifuge at 1,000 x g for 10 mins to pellet the cells, discard the supernatant.
- Add 200 µl FATG1 Buffer and 20 µl Proteinase K to each well and resuspend the pellet by pipetting.
- Seal with adhesive film and incubate the plate with shaking at 100 rpm, 60°C for 10~20 mins to lyse the sample.
- **(Optional)** If RNA-free genomic DNA is required, add 5 µl of RNase A (50 mg/ml, not provided) to each well and incubate at room temperature for 4 mins.
- · Add 200 µl FATG2 Buffer to each well and mix by pipetting.
- · Seal with Adhesive Film. Incubate the plate with shaking at 100 rpm, 70°C for 20 mins until the sample lysate is clear.
- · Proceed to STEP 2.

STEP 2. Adjust binding condition:

· Add 200 µl ethanol (96~100%) to each well. Mix immediately by pipetting 5~10 times.

STEP 3. DNA Binding

- · Place a Filter Plate (provided, 96-Well DNA Binding Plate) on a clean Collection Plate (provided, second Collection Plate).
- Transfer the sample mixture to each well of the Filter Plate and discard the Collection Plate (first Collection Plate).
- Place the plates in a rotor bucket and centrifuge at 5,600~6,000 x g for 2 mins.
- Discard the flow-through and return the Filter Plate to the Collection Plate.

STEP 4. Wash the Filter Plate with W1 Buffer and Wash Buffer

- \cdot Add 400 μ l of W1 Buffer (ethanol added) to each well of the Filter Plate.
- Place the combined plate in a rotor bucket and centrifuge at 5,600~6,000 x g for 2 mins.
- Discard the flow-through and return the Filter Plate to the Collection Plate.
- · Add 650 µl of Wash Buffer (ethanol added) to each well of the Filter Plate.
- · Place the combined plate in a rotor bucket and centrifuge at 5,600~6,000 x g for 15 mins.
- · Discard the flow-through and return the Filter Plate to the Collection Plate.

STEP 5. Dry the membranes of Filter Plate

· Place the Filter Plate on top of a clean paper towel (not provided) and stand at room temperature for 10 mins.

STEP 6. DNA Elution

- Place an Elution Plate (provided, 96-Well PCR Plate) on top of a clean Collection Plate (provided, third Collection Plate) then place the Filter Plate on the Elution Plate. (top: Filter Plate; middle: 96-well PCR Plate; bottom: Collection Plate).
- · Add 75~200 µl of preheated Elution Buffer or ddH2O to the membrane center of the Filter Plate. Stand for 3 mins.
- -Important Step! For effective elution, make sure that Elution Buffer or ddH2O is dispensed on the membrane center and is absorbed completely.
- -Important: Do not elute the DNA using Elution Buffer or ddH2O less than suggested volume (<75 µl). It will lower the DNA yield.
- \cdot Place the plates in a rotor bucket and centrifuge at 5,600~6,000 x g for 5 mins to elute DNA.
- · Seal the Adhesive Film and store the DNA at -20°C.

Protocol: Vacuum processing

Please Read Important Notes Before Starting The Following Steps.

Required hardware

- 60°C and 70°C shaker incubators or ovens.
- Vacuun manifold for 96-well plate and vaccum source reached to -15 inches Hg.
- **Alternative**: If using centrifugation for Elution Step (STEP 6), a centrifuge equipment is required, capable of 5,600~6,000 x g, with a swing-bucket rotor and the adaptor for 96-well plate.

Hint

Preheat required Elution Buffer or ddH₂O (75~100 µl per well) to 70°C for DNA elution step (STEP 6).

STEP 1: Sample lysis

• Whole blood, buffy coat, serum, plasma, body fluids

- · Add 20 µl Proteinase K to each well of a Collection Plate (provided, 96-well 2 ml Plate; first Collection Plate).
- · Add 200 µl of sample to each well and mix by pipetting.
- · Add 200 µl FATG2 Buffer to each well and mix by pipetting.
- Seal with Adhesive Film. Incubate the plate with shaking at 100 rpm, 60°C for 20 mins.
- (Optional) If RNA-free genomic DNA is required, add 5 µl of RNase A (50 mg/ml, not provided) to each well and incubate at room temperature for 4 mins.
- Proceed to STEP 2.

• Animal Tissue

- Cut up to 25 mg of animal tissues (or 0.5 cm of mouse tail) and transfer into each well of a Collection Plate (provided, 96-well 2 ml Plate; first Collection Plate). Reduce the sample size to 10 mg for high DNA contained tissue, such as liver and spleen.
- Add 200 µl FATG1 Buffer and 20 µl Proteinase K to each well of a Collection Plate (provided, 96-well 2 ml Plate; first Collection Plate).
- Seal with Adhesive Film. Incubate the plate with shaking at 100 rpm, 60°C for 1~2 hrs or more time until the tissue sample is lysed completely. To reduce the incubation time, grind the sample in liquid nitrogen or homogenize the sample mechanically in advance.
- **(Optional)** If RNA-free genomic DNA is required, add 5 µl of RNase A (50 mg/ml, not provided) to each well and incubate at room temperature for 4 mins.
- · Add 200 µl FATG2 Buffer to each well and mix by pipetting.
- · Seal with Adhesive Film. Incubate the plate with shaking at 100 rpm, 70°C for 20 mins until the sample lysate is clear.
- Proceed to STEP 2.

Animal Cultured Cell

- · Transfer cultured cells to each well of a Collection Plate (provided, 96-well 2 ml Plate; first Collection Plate).
- · Centrifuge at 1,000 x g for 10 mins to pellet the cells, discard the supernatant.
- · Add 200 µl FATG1 Buffer and 20 µl Proteinase K to each well and resuspend the pellet by pipetting.
- Seal with adhesive film and incubate the plate with shaking at 100 rpm, 60°C for 10~20 mins to lyse the sample.
- (Optional) If RNA-free genomic DNA is required, add 5 µl of RNase A (50 mg/ml, not provided) to each well and incubate at room temperature for 4 mins.
- · Add 200 µl FATG2 Buffer to each well and mix by pipetting.
- · Seal with Adhesive Film. Incubate the plate with shaking at 100 rpm, 70°C for 20 mins until the sample lysate is clear.
- Proceed to STEP 2.

STEP 2: Adjust binding condition:

 $\cdot\,$ Add 200 μl ethanol (96~100%) to each well. Mix immediately by pipetting 5~10 times.

STEP 3. DNA Binding

- Fix a clean Collection Plate (provided, second collection plate) on the rack of vacuum manifold and cover the manifold lid. Place a Filter Plate (provided, 96-Well DNA Binding Plate) on top of the Collection Plate.
- · Transfer the sample mixture to the Filter Plate and discard the Collection Plate (first Collection Plate).
- · Apply vacuum at 10 inches Hg until the well have emptied.
- · Discard the flow-through and return the Filter Plate and the Collection Plate to the manifold.

STEP 4. Wash the Filter Plate with W1 Buffer and Wash Buffer

- · Add 400 µl of Wash Buffer 1 (ethanol added) to each well of the Filter Plate.
- $\cdot\,$ Apply vacuum at 10 inches Hg until the well have emptied.
- · Discard the flow-through and return the Filter Plate and the Collection Plate to the manifold.
- · Add 650 µl of Wash Buffer 2 (ethanol added) to each well of the Filter Plate.
- $\cdot\,$ Apply vacuum at 10 inches Hg until the well have emptied.
- \cdot Discard the flow-through and return the Filter Plate and the Collection Plate to the manifold.

STEP 5. Dry the membranes of Filter Plate

- $\cdot\,$ Gently tap the tips of the Filter Plate on a clean paper towel to remove residual liquid.
- Return the Filter Plate to the Collection Plate fixed in the manifold.
- · Apply vacuum for an addition 10 mins.
- · Discard the flow-through and the Collection Plate (third Collection Plate).

STEP 6. DNA Elution

3

- Place an Elution Plate (provided, 96-Well PCR Plate) on top of a clean Collection Plate (provided, third Collection Plate) and fix
 plates on the rack of manifold. Cover the manifold lid and place the Filter Plate on the Elution Plate. (top: Filter Plate; middle: 96-well
 PCR Plate; bottom: Collection Plate)
- Add 75~200 µl of preheated Elution Buffer or ddH2O to the membrane center of the Filter Plate. Stand for 3 mins.
- -Important Step! For effective elution, make sure that Elution Buffer or ddH2O is dispensed on the membrane center and is absorbed completely.
- -Important: Do not elute the DNA using Elution Buffer or ddH2O less than suggested volume (<75 µl). It will lower the DNA yield.
- · Close the manifold valve. Turn on the vacuum source to build up a vacuum to 15 inches Hg.
- · Open the manifold valve to apply vacuum to elute DNA.
- · Seal the Adhesive Film and store the RNA at -20°C.

Alternative: If the consistent volume of elutes are needed, the centrifuge protocol are recommended to perform the elution step (Page 3, STEP 6).